量子点
-
南京农大高彦征教授团队发现石墨烯量子点影响抗生素耐药性传播
南京农业大学资源与环境科学学院高彦征教授课题组以ARGs传播主要方式之一—基因水平转移为着眼点,揭示了GQDs对胞外ARGs水平转移进入细菌的影响
-
Rare Metals 安徽大学何刚:石墨烯量子点调制溶液制备的铟镓氧薄膜晶体管及其稳定性研究
1.提出一种基于全溶液法制备GQDs-InGaO薄膜晶体管。2.GQDs有助于提高InGaO薄膜晶体管的电学性能。3.GQDs-InGaO薄膜晶体管具有良好的偏压稳定性和偏压光照稳定性。
-
ACS Nano:手性石墨烯量子点可增强细胞外囊泡的载药量
作为细胞分泌的纳米级细胞外囊泡,细胞外小囊泡(sEV)作为安全有效的载体将药物输送到病变部位具有巨大的潜力。美国圣母大学Yichun Wang和Hsueh-Chia Chang基于与sEV脂质双层的手性匹配,报道了一种手性石墨烯量子点(GQDs)sEV负载平台。
-
石墨烯量子点中近乎完美的粒子空穴对称性
亚琛工业大学的2D材料和量子器件小组现在已经证明,双层石墨烯中的双量子点比其他材料提供更多:它们允许实现具有近乎完美的粒子空穴对称性的系统,其中传输通过产生和湮灭具有相反量子数的单个电子 – 空穴对发生。这导致了强大的选择规则,可用于自旋和谷量子比特的高保真读出方案。
-
付民/雷钰/林雨潇/Mauricio Terrones教授,AM:仿生合成铁氧体量子点/石墨烯异质材料用于高性能超级电容器
量子点结构牢固的锚定在石墨烯片层上,不仅增强了结构稳定性,而且改善了导电性,从而加速了离子传输和电荷迁移。良好的结构特性赋予了电极材料更好的电化学表现,所合成的NiFe2O4QD/G复合电极材料表现出优异的电容性能(1 A g-1时比电容达到697.5 F g-1,10 A g-1时比电容为501.0 F g-1,1万次循环后比电容没有明显衰减 )。
-
EEM |洛林大学 Jean Jacques Gaumet 教授:电化学储能器件中石墨烯量子点的研究进展
综述了石墨烯量子点(GQDs)在电池、超级电容器中作为电极材料或与活性材料混合作为辅助剂的最新研究,总结了电化学性能,最后回顾了基于GQDs后续电极材料优化策略的挑战和展望。
-
PRL:石墨烯/ WSe₂异质结量子点中的分子塌缩态
前期,何林教授课题组与孙庆丰教授课题组密切合作,在实验上证明构筑的石墨烯/WSe₂异质结量子点中同时存在ACSs和回音壁模式(WGMs,Klein散射引起的准束缚态)两种不同类型的准束缚态[8]。最近,两课题组再次通力合作,通过研究石墨烯/ WSe₂异质结量子点中的分子塌缩态发现ACSs的反键轨道态能转化成WGMs,揭示了ACSs和Klein隧穿效应内在深刻的关联。
-
中国石油大学(华东)范壮军教授/黄毅超教授:氮化钼量子点修饰氮掺杂石墨烯的原子界面工程策略用于高效稳定的碱性电解水析氢
本文开发了“多酸原子界面工程策略”用于制备掺杂石墨烯负载单原子Al和O共掺杂的氮化钼量子点催化剂(AlO@Mo2N-NrGO)。研究结果表明:通过电化学原位重构可以在AlO@Mo2N-NrGO电催化剂表面重构生成Al-OH水合物,这不仅极大改善了电催化剂表面的亲水性,还能有效降低水分解和氢气脱附的能垒(在400 mA·cm-2工业大电流密度下仅需285 mV的过电位)。
-
Adv. Mater.: 植入石墨烯量子点用于靶向增强肿瘤成像和局部药代动力学长期可化视
种植在纳米医学中的超高光稳定性荧光GQDs在广泛应用中有很大的潜力来缓解这些不良情况,如胚胎发育、干细胞分化轨迹、和基于成像的时空单细胞组学。当然,目前种植的GQDs纳米粒子也有很多局限性:一是绿色荧光GQDs的穿透深度有限,二是核心NPs在体内短时间内无法生物降解。
-
范壮军教授、黄毅超教授、任浩副教授,Small观点:基于石墨烯量子点配位的缺陷修复策略提升Co-N-C电催化剂的氧还原反应性能
该工作从Co掺杂的ZIF-8(Co-ZIF-8)前驱体入手,利用石墨烯量子点(GQDs)和二甲基咪唑配体(2-Melm)竞争配位,后续辅以高温热解处理,高效修复了Co-N-C电催化剂的碳缺陷,同时其电子结构和表面亲水性也得到了极大的改善。优化后的G-CoNOC电催化剂表现出了优异的电子传输性能,在极限电流的条件下运行200个小时,其电流密度还能稳定在90%以上。这得益于G-CoNOC电催化剂具有很强的抗自由基攻击能力,并且能有效还原过氧化氢副产物,从而极大提高了电催化ORR的稳定性和动力学性质。
-
Matter:在原子级精确水平上高效自下而上合成石墨烯量子点
郑州大学卢思宇教授团队受邀综述了GQDs的合成和最新进展。作者从传统碳点和GQDs的区别和联系入手,通过使用骨架生长方法丰富地总结了 GQDs 的合成策略并就如何使用有机策略准确合成完全符合预期假设的 GQD 结构提出了指南。
-
Nano Lett. | 气泡诱导自组装制备纳米裂纹状石墨烯量子点薄膜
研究团队提出利用简单的气泡自组装方法制备了一种具有裂纹状微/纳米结构的GQD薄膜,将其应用到高效相变热管理中,实现临界热通量和有效传热系数的协同增强,提高聚光光伏电池的性能。本研究为气泡自组装方式制备石墨烯基薄膜提供新的思路,有望在能源相关系统中具有广阔的应用前景。
-
ACS Appl. Mater. Inter: 生物资源衍生的石墨烯量子点作为超灵敏环境纳米探针的等离子体纳米工程
国立台湾科技大学化学工程系江伟宏教授团队提出了一种利用微等离子体在环境条件下合成结构和功能化良好的生物资源来源GQDs,用于污染物检测。作者利用六种不同的生物资源来合成具有不同功能的GQDs,包括果糖衍生的GQDs (F-GQDs)、壳聚糖衍生的GQDs (CS-GQDs)、柠檬酸衍生的GQDs (CA-GQDs)、木质素衍生的GQDs (L-GQDs)、纤维素衍生的GQDs (C-GQDs)和淀粉衍生的GQDs (S-GQDs)。合成的生物资源GQDs具有线性范围宽、检测限低的特点,可用于高选择性水污染物检测。