超导体

  • 石墨烯超导,同期两篇Nature!

    人们对于扭转双层石墨烯、三层石墨烯种发现的超导现象产生广泛的研究兴趣,扭转双层石墨烯和扭转三层石墨烯体系的关键是层间耦合和moiré超晶格之间的相互作用关系,以及如何形成强关联的低能量平带。通过晶格失配的moiré图案或者二维材料的扭转异质结(比如过度金属硫化…

    2025年1月24日 科研进展
    15700
  • 揭示 “神奇 “材料的超导极限

    康奈尔大学的研究人员通过确定这种材料可达到的最高超导温度–60 开尔文,在了解这种材料如何达到这种状态方面取得了进展。这一发现在数学上是精确的,这在该领域实属罕见,并促使人们对从根本上控制超导性的因素有了新的认识。

    科研进展 2024年11月5日
    20500
  • 三个 Chalmers 项目获得 KAW 补助金

    该研究项目旨在探索如何利用这些摩尔纹和量子度量来设计带状结构,并在高温超导体和石墨烯中创建平坦带。希望通过将这两种材料平台结合起来,加深我们对高温超导背后原理的理解,并促进在更高温度下的超导,最终实现室温超导。

    产业新闻 2024年10月15日
    29900
  • 开发出控制超导设备量子束缚态的新方法

    在这项研究中,研究团队利用栅极电压实时控制双层石墨烯的二次能量分散以及超导相干长度。他们利用之前工作中开发的隧道光谱法,实时观测了不同栅极电压下安德烈耶夫束缚态的变化,并证实实验结果与理论预测相吻合。

    2024年7月2日
    30800
  • 量子效应让电子静止时也能超导

    在这项工作中,研究人员研究了扭曲双层石墨烯超导性的原因。目前的超导理论,即Bardeen-Cooper-Schrieffer(BCS)理论,无法解释在远高于绝对零度的温度下超导的材料。这是物理学中一个巨大的未解难题。扭曲双层石墨烯具有超导性,其电子速度非常慢,这表明科学家需要修改 BCS 方程。方程必须包括量子电子所在空间的几何形状。这一发现为寻找高温超导材料提供了新方向。这些超导体将实现重要的实际应用,例如几乎不损失电能的输电线。

    2024年6月3日
    32900
  • Jeong Min Park获得2024年施密特科学奖学金 这位博士生将利用这笔奖金寻找新的物质和粒子相

    在博士学习期间,她通过设计具有针对性相互作用和拓扑结构的新材料,研究了新型超导电性。特别是,她利用石墨烯–原子般薄的二维石墨层(与铅笔芯相同的材料)–将其变成了一种 “神奇 “的材料。这种所谓的魔角扭曲三层石墨烯提供了一种超强的超导形式,在高磁场下也能保持稳定。后来,她发现了这些材料的整个 “神奇家族”,阐明了超导和相互作用驱动现象背后的关键机制。这些成果为研究二维突发现象提供了一个新的平台,可促进电子学和量子技术的创新。

    2024年5月17日
    38500
  • 【科研进展】利用真空光学微腔调控转角石墨烯能带

    尽管TBG中奇异超导性的起源仍然是一个有争议的话题,但普遍认为平带效应在其中起着关键作用。然而,由于TBG在魔角处并非稳定构型,实验上常常难以精确制备出魔角石墨烯。在该项研究中,研究人员提出了一种新方法,即利用手性微腔中的量子涨落来调控TBG的能带,使得TBG即便在魔角之外也能形成平带。

    2024年4月19日
    38800
  • LK-99有了定论,又来炒作石墨烯,超导超导概念炒作何时休止

    所用的激活剂,是硅油、真空泵油,脂肪烃油等。先不说这个操作是否管用,油类物质,只要有直链碳氢键,就容易吸水。石墨烯做导电应用,对水敏感,吸水后,电导率就低了,性能就变差了,可能还不如金属铝的电导率,室温,石墨烯-油这样的复合体系如何实现室温超导?

    访谈评论 2023年8月8日
    98800
  • 又一室温超导体?美国一公司欲与韩国争第一

    其7月25日的专利文件称,“本发明提供了一类第II类超导体,包括至少在一个表面用脂肪烃或其他合适的活化材料(即在其结构中不包含π键的非极性液体,如真空泵油、由甲基硅酮组成的硅油,或由包含反应性官能团的链的一端与基底结合的脂肪烃链)润湿的穿孔石墨烯。本发明的超导体在远高于室温的温度(即临界温度)下仍保持超导性,无需保持低温,并可在强磁场下工作。”

    2023年7月31日
    96900
  • 电子不仅是粒子而且是波 “魔角”石墨烯超导性成因揭示

    研究人员表示,平带中量子波函数的几何形状,加上电子之间的相互作用,导致了双层石墨烯中电子的流动而没有耗散。常规方程仅能解释其发现的一成超导信号。实验测量表明,具有偏转角度的双层石墨烯成为超导体的九成原因在于量子几何。这种材料的超导效应只有在极低温度下的实验中才能发现。

    2023年2月16日
    82000
  • 欧盟增强二维超导体的项目

    该项目是开拓者计划的一个很好的例子,该计划为基于高风险/高收益科学-技术突破性跨学科研究的项目提供资金。Graphenea的主要作用是种植大于80微米的石墨烯单晶,这将为新材料提供极其高质量的基础。

    2023年2月13日
    72200
  • 参考封面|解锁“魔角”石墨烯的隐藏技能

    英国《新科学家》周刊12月3日刊登题为《隐藏在超薄材料中的奇特量子效应曝光》的封面文章,作者是菲利普·鲍尔。全文摘编如下:

    2022年12月12日
    88300
  • 首个石墨烯超导量子干涉装置面世 有望为量子和超导研究提供新思路

    在最新研究中,恩斯林科研团队利用扭曲石墨烯,制造出了首个超导量子干涉装置(SQUID),用于演示超导准粒子的干涉。传统SQUID正广泛应用于医学、地质学和考古学等领域,其灵敏的传感器能够测量磁场的微小变化,但其只与超导材料一起工作,因此在工作时需要使用液氦或氮气进行冷却。

    科研进展 2022年11月7日
    72500
  • 科研进展|上科大物质学院刘健鹏、孙兆茹联合团队在摩尔石墨烯体系的摩尔声子和奇异电荷序方面取得重要进展

    近日,上海科技大学物质科学与技术学院刘健鹏课题组和孙兆茹课题组合作,在转角双层石墨烯摩尔超晶格体系中的摩尔声子和奇异电荷序等方面取得重要进展,相关成果发表于国际知名学术期刊Nano Letters。

    2022年10月24日 科研进展
    94600
  • 首届致远荣誉计划毕业生张怡然以第一作者在Science发表论文

    该论文第一作者张怡然,是致远学院2018届(首届致远荣誉计划)物理学方向毕业生,目前在加州理工学院攻读博士学位。他在本次研究中主要负责多层魔角石墨烯样品的制备,极低温强磁场量子输运测量,数据分析以及论文撰写。该研究首次在多层魔角石墨烯中的超导观测极大地拓展了石墨烯的强关联现象,其中的超导电性与对称破缺相的紧密联系为日后非常规超导的实验与理论发展奠定了坚实的基础。

    2022年10月8日
    1.1K00
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部