电极
-
高硫负载下稳定的锂硫电池:铜基MOF-石墨烯气凝胶复合材料的电化学性能
在这项研究中,研究者们通过将铜基金属有机框架(MOF)与石墨烯气凝胶(GA)结合,制造了一种自支撑的硫宿主材料,用于Li-S电池正极。MOF粒子不仅在催化GO还原反应中发挥作用,还在电化学催化中促进了SRR动力学,从而提高了电池的整体性能。实验和理论计算结果表明,MOF-GA电极具有较高的催化活性,能够实现更高的硫利用率和更低的容量衰减率。
-
天津科技大学韦会鸽Carbon:引入磷酸的氟化聚酰亚胺用于高性能激光诱导石墨烯电极以提升微超级电容器能量
本研究成功制备了磷和氟共掺杂的 FP – LIG 微电极,其具有更有序、稳定的孔结构和良好的润湿性。FP – 3 – LIG 表现出最佳的电化学性能,基于其组装的 FP – 3 – MSC 具有高能量密度、优异的循环稳定性和出色的柔韧性。这一研究成果为微超级电容器的发展提供了新的思路和方法,有望在柔性可穿戴电子等领域得到广泛应用。未来,可以进一步优化 FP – LIG 的制备工艺,提高其性能和稳定性,推动微超级电容器的实际应用。同时,还可以探索 FP – LIG 在其他领域的应用潜力,为相关领域的发展提供新的动力。
-
IF 18.5!MXene/石墨烯氧化物/木质素磺酸盐墨水3D打印具有垂直排列孔的厚电极研究分析
这项研究为高性能超级电容器电极的设计和制造提供了新的思路。通过创新的材料组合和先进的3D打印技术,实现了电极性能的显著提升。这不仅推动了能源存储技术的发展,也为其他功能材料的3D打印制造开辟了新的可能性。
-
东华理工大学张爽团队Small:电荷动力学和界面极化的MoS2/GO异质结电极用于增强电容去离子提铀
东华理工大学张爽团队开发了一种新型二硫化钼/氧化石墨烯异质结(MoS2/GO-H)作为电容去离子(CDI)的有效电极,用于去除水中低浓度的铀离子(UO22+)。这种异质结通过结合电吸附和电催化的优势,引入了一种创新的电吸附-电催化系统(EES)策略。EES系统利用MoS2和GO界面处的界面极化产生额外的电场,显著影响载流子的行为。
-
海河英才谱 在新材料产业赛道上跑出“加速度”(图)——记天津市新碳烯能新材料科技有限公司总经理吴思达
2021年,吴思达带领团队创立了天津市新碳烯能新材料科技有限公司,她担任总经理,致力于将先进碳材料的研究成果推向市场。团队在国际上首创的“低温负压化学解理石墨烯制备方法”,成功破解了传统制备工艺瓶颈,加速石墨烯材料的量产进程。在此基础上,吴思达所在团队还研发出高通量新型碳基过滤材料。这一创新突破了传统活性炭材料“高性能必然大体积、多孔必然不导电”的局限,为超级电容器和复合水体净化等应用领域带来新的可能,实现高端活性炭材料的国产化替代。
-
超级电容器新进展:0.5秒闪蒸焦耳加热法制备高性能石墨烯电极
研究了通过闪蒸焦耳加热(FJH)技术快速制备高性能石墨烯基超级电容器电极的方法,展示了该技术在实现少层石墨烯的高效合成和显著提升电极电化学性能方面的潜力。
-
西安交通大学:易于组装柔韧、可拉伸和可连接的对称微型超级电容器,具有宽工作电压窗口和良好的耐用性
研究通过将激光直写石墨烯(LG)电极与磷酸-非离子表面活性剂液晶(PA-NI LC)凝胶电解质相结合,开发出了可在宽工作电压窗口工作的柔性对称微型超级电容器(MSC)。为了增加 MSC 器件的柔性并提高其与各向异性表面的保形能力,在聚酰亚胺(PI)薄膜表面形成相互咬合的石墨烯后,进一步将器件转移到柔性、可拉伸和透明的聚二甲基硅氧烷(PDMS)基底上;该基底在弯曲测试中显示出良好的柔性和机械特性。
-
烟台大学《AEM》:超润湿转移诱导的一维银纳米线/二维石墨烯复合柔性透明电极
生成的复合电极由1D AgNWs作为渗透网络,2D石墨烯纳米片作为导电性增强组分组成,显著降低了AgNWs薄膜的片层电阻,从80.6 Ω·sq降至27.1 ·sq−1同时保持光学透过率高达89.0%。复合电极还具有优异的机械弯曲稳定性和化学稳定性。该复合电极被成功应用于透明加热装置,显示出良好的热稳定性和加热效果。这项研究为高性能 FTE 的制备提供了一种新的方法,可实现大面积和连续生产。
-
GraphEnergyTech 获得由 Aramco Ventures 领投的 100 万英镑种子期前投资
GraphEnergyTech 首席执行官 Thomas Baumeler 博士说:”我们对筹资结果和 Aramco Ventures 的投资非常满意。这笔资金将使我们先进石墨烯电极的研发工作更上一层楼。它们有可能在下一代太阳能电池的开发中发挥作用。
-
1 µm!飞秒激光诱导MXene复合石墨烯
在本研究中,将MXene掺入聚酰亚胺前体溶液中,得到MXene混合聚酰亚胺薄膜。利用飞秒激光直写工艺,制备了嵌入MXene晶格的多孔石墨烯。利用飞秒激光的低热影响,成功通过在聚合物薄膜上直接激光写入制备了最小线宽为1 µm的飞秒激光诱导MXene复合石墨烯(LIMG)。这种独特的前体掺杂技术使MXene能够在LIG的晶格内均匀掺杂,为载流子在缺陷密布的LIG晶格中的传输创造了稳定的环境。与原始LIG相比,LIMG显示出增强的载流子迁移率和显著改善的电导率,提高了两个数量级,达到3187 Sm−1。
-
新型高灵敏度唾液皮质醇传感器问世–无需进行侵入性血液化验
新型传感器由 iGii(前身为 Integrated Graphene)公司制造的 Gii-Sens 电极支撑。这种独特的多孔三维碳纳米结构具有高表面积和高导电性的碳基电极平台。与金等其他常用传感器材料相比,它的灵敏度更高,可持续性更强。这种超灵敏生物传感器的制作过程包括通过非共价固定将抗皮质醇单克隆抗体(mAb-cort)附着到 PBASE-NHS/GF 电极上。这种方法既能保持生物受体石墨烯的结构完整性和导电性,又能促进高效、可控的抗体固定,从而提高生物传感器的灵敏度。
-
郑州大学《Adv Sci》:3D打印亲钠Co3O4@C/rGO纳米片,用于超长周期金属钠电池
研究通过三维打印(3D)方法展示了沉积在还原氧化石墨烯(Co3O4@C/rGO)上的 Co3O4 和碳复合材料的分层结构微网格框架,该框架的多孔结构可控,高度和宽度可调,可用于无树枝状的 Na 金属沉积。结合光谱和计算分析,证实了立方 Co3O4 相的亲钠性、便捷的 Na 金属沉积动力学和富含 NaF 的固体电解质相(SEI)的形成。
-
西安交通大学:综述!水性混合超级电容器用柔性电极的最新进展与展望
回顾并总结了基于多孔金属载体、碳基板(包括碳纳米管网络)、石墨烯和可穿戴碳(碳纤维、碳布、碳纤维布等)的柔性电极材料以及高性能AHS的其他柔性材料的最新进展。这些柔性电极具有独特的构型和优化的界面结构,使AHS在各种恶劣条件下具有优异的电化学性能和优异的机械稳定性,具有巨大的实际应用潜力。此外,还概述和讨论了构建具有新颖构型和AHS的柔性电极的未来方向和前景
-
齐齐哈尔大学:高堆积密度氟掺杂石墨烯复合水凝胶,用于超级电容器应用
与传统的物理方法和与伪电容材料的复合方法相比,本文的合成策略不仅能最大限度地提高石墨烯材料的结构完整性和使用寿命,还能赋予其良好的伪电容特性和速率性能。本文的研究成果将为开发具有优异重力和体积电化学性能的石墨烯基电极材料提供新的思路。
-
源自石墨烯的新型材料可提高神经假体的性能
在设计神经义肢时,电极必须足够小,以便具有选择性,只与神经中数量较少的轴突发生电相互作用。因此,尽管电极通常由金、铂或氧化铱等金属制成,但仍有必要找到导电能力更强、电极触点更小的其他材料。这就是石墨烯及其衍生物发挥作用的地方;它们出色的电气特性使得新一代微电极得以开发。