科研进展
-
天津大学研发出石墨烯防冰涂料,自修复后还能保持良好除冰性能
相较于其他自愈合防冰涂料,这种自愈合防冰涂料的主要优势为:(1)不需要外界刺激,可实现自主愈合;(2)可在多种极端环境下愈合;(3)愈合后仍保持良好的除冰性能。
-
大连工业大学王海松教授课题组CEJ:基于还原氧化石墨烯缺陷修补的高韧性导电水凝胶用于自供电柔性传感微系统
考虑到快速响应时间、超灵敏和优异的抗疲劳性能,这种附着在人体上的rGO-CMOF/DNH传感器能够及时监测运动、生理信号和情绪,实现个性化医疗。这项工作为未来构建高性能柔性、可穿戴和自供电传感微系统提供一个新思路。
-
厦门大学白华教授等 Small:自复合 – 用于提高石墨烯纳米片/热固性树脂复合材料导电性能的有效方法
该研究团队将传统的GN/热固性树脂粉碎成微米级的复合粉末,与GN混合形成新的复合填料,以制备与热固性树脂的自复合材料。在不增加GN含量的前提下,复合材料的导电性能得到了明显的改善。
-
ACS AMI:利用金纳米星/石墨烯量子点纳米复合物探索低功率单脉冲激光触发的双光子光动力/光热联合治疗
这项研究揭示了一种基于等离子体金属/QD混合物的成功的单激光触发的协同组合TP-PDT/PTT,具有在临床环境中进行未来研究的潜力。
-
南京农大高彦征教授团队发现石墨烯量子点影响抗生素耐药性传播
南京农业大学资源与环境科学学院高彦征教授课题组以ARGs传播主要方式之一—基因水平转移为着眼点,揭示了GQDs对胞外ARGs水平转移进入细菌的影响
-
食品科学与工程学院徐志祥教授团队在金纳米星@还原氧化石墨烯SERS底物研究方面取得新进展
通过种子介导生长法在还原氧化石墨烯表面合成金纳米星,通过还原氧化石墨烯的吸附作用使苯并[a]芘分子接近金纳米星表面,借助金纳米星的表面等离子体共振效应获得增强的苯并[a]芘SERS信号。
-
郑州大学许群课题组Small:超临界CO2定向辅助合成低维功能材料
文章首先讨论了超临界流体特点及超临界CO2绿色溶剂体系的优势,以及材料构筑过程中的物理化学作用。接着从一维材料出发介绍了超临界CO2在不同溶剂体系条件下对碳纳米管的定向修饰,借助不同聚合物外延生长手段得到多种类型的杂化结构;随后分析了二维材料体系中超临界CO2在层状材料剥离、原子结构调控、相工程及应力工程中的独特作用,材料涵盖了石墨烯、过渡金属硫化物及氧化物、氮化硼、石墨炔等;在此基础上,进一步总结了借助超临界技术实现包括横向异质结、纵向异质结、多元异质结和非晶异质结等多种类型二维异质结的构筑。
-
2023年北京“最美科技工作者”揭晓
北京理工大学物理学院院长姚裕贵教授在反常霍尔效应、硅烯、石墨烯、拓扑材料等方向取得突破性成果,还创立科普品牌,传播科学文化
-
Rare Metals 安徽大学何刚:石墨烯量子点调制溶液制备的铟镓氧薄膜晶体管及其稳定性研究
1.提出一种基于全溶液法制备GQDs-InGaO薄膜晶体管。2.GQDs有助于提高InGaO薄膜晶体管的电学性能。3.GQDs-InGaO薄膜晶体管具有良好的偏压稳定性和偏压光照稳定性。
-
重庆大学李剑/夏圣垣等《Applied Physics Letters》:基于忆阻器与力学传感器的“感存算一体”力学感知系统
近期,重庆大学李剑、夏圣垣等研究人员提出了一种“感存算一体”人工触觉系统(smcATS),由一个石墨烯-聚苯乙烯微粒(G-PsMp)力学传感器和一个Ag-Fe3O4-ITO忆阻器组成。G-PsMp力学传感器具有优异的灵敏度、响应/恢复速度和稳定性,能够模拟人类的触觉感知。
-
中科大/厦大JACS:第二层拓扑石墨烯纳米带中的远程触发类多米诺环脱氢
石墨烯纳米带(GNRs)表面合成中的环脱氢反应通常涉及一系列Csp2–Csp2和/或Csp2-Csp3偶联,并且仅发生在未覆盖的金属或金属氧化物表面。在缺乏必要的催化位点的情况下延长第二层GNR的生长仍然是一个巨大的挑战。
-
Nano Lett.:石墨烯超材料通过热辐射的超快可调谐太赫兹到可见光转换
通过使用1 V数量级的栅控电压,本文展示了发射可见光的可调开/关比超过30。本文还证明,光栅-石墨烯超材料导致可见光范围内THz诱导的发射功率增加2个数量级。实验结果与热力学模型一致,描述了通过带内Drude吸收THz光加热的电子系统产生的黑体辐射。
-
ACS Nano:手性石墨烯量子点可增强细胞外囊泡的载药量
作为细胞分泌的纳米级细胞外囊泡,细胞外小囊泡(sEV)作为安全有效的载体将药物输送到病变部位具有巨大的潜力。美国圣母大学Yichun Wang和Hsueh-Chia Chang基于与sEV脂质双层的手性匹配,报道了一种手性石墨烯量子点(GQDs)sEV负载平台。
-
石墨烯量子点中近乎完美的粒子空穴对称性
亚琛工业大学的2D材料和量子器件小组现在已经证明,双层石墨烯中的双量子点比其他材料提供更多:它们允许实现具有近乎完美的粒子空穴对称性的系统,其中传输通过产生和湮灭具有相反量子数的单个电子 – 空穴对发生。这导致了强大的选择规则,可用于自旋和谷量子比特的高保真读出方案。