科研进展
-
ACS Mater. Lett.┃氧化石墨烯固体“热还原”的几何效应
近日,美国西北大学的黄嘉兴教授团队观察到GO的热还原过程具有明显的几何(密度、尺寸)效应。热还原(实为歧化)反应的温度、速率、释放气体的化学组成和还原产物的碳氧比都会受到样品几何尺寸的影响,原因可归结于样品内部释放的气体(例如CO)在逃逸途中与GO发生了额外的还原反应(图1)。这个发现加深了对GO化学反应性的认识和理解,可以为热还原制备宏观尺寸石墨烯材料的后续研究提供启发。
-
韩国蔚山科技大学《ACS AMI》:石墨烯防粘层,用于金属电极向柔性电子的有效剥离和转移
当石墨烯抗粘层(AAL)插入金属和任意施主衬底之间的界面时,石墨烯的弱平面范德华力可以有效地减弱界面相互作用,从而能够有效地从金属电极上释放金属电极供体底物。具有石墨烯AAL的柔性嵌入式金属电极表现出优异的导电性,机械耐久性,耐化学药品性,以及在柔性加热器应用中的出色性能。这项研究为制造高性能和超柔性嵌入式金属电极提供了一种有效的策略,该电极可用于功能强大的柔性电子领域。
-
中科院能源所杨亚综述:用于能量收集的2D纳米材料
国家的发展与其能源消耗息息相关。目前,二维纳米材料已成为能量收集应用研究的主要关注点,范围从小规模的低功率电子设备到大规模的工业级应用,例如自供电传感器设备,环境监测和大规模发电。科学家们正在努力利用二维纳米材料独特的性能来攻克应用中材料选择和制造技术方面的难点,从而为紧凑型能量收集装置替代电池和传统电源提供了更多可能性。
-
ACS Catal.: 光子闪光技术合成Mo2C/石墨烯电催化剂用于高效析氢
提出了一种以MoO3/石墨烯为前驱体,在常温下利用光子闪光合成(PFS)在碳布衬底上的Mo2C基电催化剂的快速、简单工艺。选择了宽度为几微米的轻度边缘氧化的氧化石墨烯片,其目的是由于存在边缘功能基团而具有较高的表面负载和易于形成碳化物。
-
Nano Energy:石墨烯片中的波传播!
研究发现,椭圆石墨烯片的能量收集效率优于三种长宽比的矩形石墨烯片,证明了椭圆石墨烯片在能量收集方面的优越性。考虑到能量收集时间和效率,纵横比为2的椭圆形石墨烯片具有最佳的动能收集效果。该研究发现将对设计和制造新兴的二维材料基能量采集器、质量传感器和气体探测器有极大地启发作用。
-
高浓度电催化“碳中和”气相产物制备石墨烯
该团队基于排水法的原理进一步设计了方便收集CO2还原气相产物的电解槽,实现了在不使用质子膜的条件下制取浓度最高达52%的CO,且电解质经长时间反应几乎不发生消耗。通过将电化学系统与CVD系统串联,CO产物被直接转换为高质量的单层石墨烯薄膜。
-
Nano Res.│石墨烯转移技术—方法、挑战和未来展望
苏州大学Mark H. Rummeli团队在Nano Research上发表综述文章,从对污染控制和成品石墨烯结构完整性保护的角度,综述了一系列目前石墨烯转移技术。此外,还讨论了它们的可扩展性、成本效益和时间效益,总结了石墨烯技术的转移挑战、替代选择和未来发展前景。
-
昆士兰大学开发新型石墨烯-铝电池 比当前锂离子电池的寿命长3倍
科学家们将石墨烯电极和铝离子电池结合起来。实验表明,这种电池的寿命比当前的领先锂离子电池要长3倍。而且,受益于更高的能量密度,其充电速度提高了70倍。新型石墨烯-铝电池易于回收利用;由于使用寿命长,用户不必频繁地更换电池;另外,与目前的锂离子电池相比,这些电池在报废后不会产生太多的有毒化合物,因此更加环保。
-
郑州大学等《ACS Nano》:多功能磁性MXene/石墨烯气凝胶,用于高性能电磁波吸收
本文,郑州大学 刘春太教授,北京化工大学Hao-Bin Zhang等研究人员在《ACS Nano》期刊发表论文,研究通过单向冷冻法和温和的肼蒸汽还原/改性过程,将氧化石墨烯(GO)、Ti3C2Tx MXene和Ni纳米链组装在一起,成功合成了一种介电/磁性多元Ni/Mxene/RGO(NiMR-H)气凝胶。
-
MIT 曹原的16 天,1 篇 Science、2 篇 Nature, 魔角石墨烯“旋之又旋” 妙在哪?丨深度
DeepTech 采访到哈尔滨工业大学甘阳、山西大学光电研究所韩拯、香港城市大学李丹枫、上海科技大学物质科学与技术学院刘健鹏、武汉大学物理科学与技术学院吴冯成(按受访者姓氏排序),共同解析曹原及其团队的最新的研究以及讨论魔角石墨烯领域的奥秘。
-
Angew:石墨烯与钨原子复合协同增强锂硫电池动力学
山东大学熊胜林教授等人通过自模板和分子筛方法,提出了一种新颖的将钨单原子催化剂固定在氮掺杂石墨烯(W / NG)上的策略,具有优异的性能。
-
杜克大学开发出世界上第一个完全可回收的印刷电子产品
在新的研究中,富兰克林和他的实验室展示了一种完全可回收的、功能齐全的晶体管,它由三种碳基油墨制成,可以很容易地打印在纸或其他灵活、环保的表面上。碳纳米管和石墨烯油墨分别用于半导体和导体。富兰克林说,虽然这些材料对印刷电子世界来说并不新鲜,但随着一种名为纳米纤维素的木材衍生绝缘电介质墨水的开发,可回收性的道路被打开了。
-
首个完全可回收印刷电子产品诞生 有助探索解决电子垃圾泛滥问题
在新研究中,杜克大学团队展示了一种完全可回收的全功能晶体管,其由3种碳基墨水制成,可以轻易打印到纸张或其他柔韧环保材料的表面。碳纳米管和石墨烯墨水分别用于半导体和导体,开辟可回收利用新途径的是一种名为纳米纤维素的木质绝缘介质墨水。将打印出的晶体管浸入一系列水槽中,用声波轻轻震动它们,并对产生的溶液进行离心,可依次回收碳纳米管和石墨烯,平均回收率接近100%。此外,两种材料都可以在相同的印刷过程中重复使用,性能几乎无损。由于纳米纤维素是由木材制成的,其与印刷纸均可被回收利用。
-
大电流密度电解水制氢:氮掺杂石墨烯修饰NiCo合金耦合介孔NiCoMoO纳米片异质结催化剂
首先以乙二醇与水的混合液为溶剂,采用溶剂热法合成镍钴钼氧化物前驱体。随后进行高温煅烧,使部分镍钴合金从前驱体中偏析出来,没有偏析出的镍钴与钼形成氧化物;偏析出的镍钴合金可以催化有机碳形成碳包覆结构,同时与镍钴钼氧化物耦合形成异质结构。此外,高温煅烧的过程中会导致纳米片脱水,从而形成介孔纳米片结构。
-
AM: 原子耦合2D无机和石墨烯纳米片作为多种功能性纳米杂化物的多功能结构单元的协同优势
韩国延世大学Seong-Ju Hwang教授等人,介绍了原子耦合的二维无机-石墨烯纳米片在探索新型异质功能材料方面的协同优势,重点介绍了它们在杂化构建单元、层间材料、添加剂、衬底和沉积单分子层等方面的关键作用。