科研进展
-
中国科学院电气工程研究所马衍伟课题组–石墨烯增强碳复合材料的大规模生产:面向实用软包电池锂离子电容器
锂离子电容器(LIC)作为一种有前途的储能系统,在高能量密度和功率密度储能器件方面显示出巨大的潜力。但受限于阳极倍率性能差、阴极容量不足,其性能有待进一步提升。这项工作为超快速制造石墨烯基碳材料用于高性能锂离子电容器提供了一个通用而有效的方案。
-
济南大学:石墨烯交联的三相NiS-NiS2-Ni3S4多界面设计全pH电解水析氢
总而言之,我们设计多界面工程的策略解决碱性电解水析氢中水吸附/解离和氢吸附的关键问题。以石墨烯@镍泡沫作为模板,通过调控镍源和硫源相对浓度,实现了石墨烯交联的三相NiS-NiS2-Ni3S4多晶型框架结构(G-NNNF)的可控制备。通过实验和第一性原理计算验证了多晶型框架结构在提高催化剂导电性、水吸附和氢吸附过程中的多界面协同。
-
美国研究闪蒸石墨烯技术:计划实现每天1吨石墨烯的生产目标
FJH工艺是一种低成本、高能效的方法,几乎可以在不到一秒的时间内将任何碳基前驱体转化为大量石墨烯。虽然石墨烯可以通过其他方法生产,但这些其他方法要么不能生产大量高质量的石墨烯,要么需要高能量工艺。FJH 避免了这些权衡。
-
Nano Res.│周期性“咬型”缺陷交替石墨烯纳米带的构筑与物性探测
成功在石墨烯纳米带边缘引入周期性限制,在热退火过程中,可以清楚地观察到中间结构键由C-Au-C金属配位键转变为C-C键,并对脱卤反应和脱氢环化表面反应进行了表征。STS光谱结果表明,所制备新型石墨烯纳米带带隙为1.65 eV。基于密度泛函理论能带结构模拟,我们发现“咬型”缺陷的引入使带隙相较于无缺陷纳米带增大了约0.61 eV。我们的分析揭示了自下向上合成石墨烯纳米带新策略,该策略允许我们获得周期性边缘限制的纳米带,调控边缘的电子和磁性特性,在纳米电子学和自旋电子学具有潜在应用。
-
北化工《Adv Mater Technol》:超轻超弹性纳米纤维增强MXene-石墨烯气凝胶,用于高性能压阻传感器
北京化工大学潘凯研究员课题组在《Adv Mater Technol》期刊发表论文,研究基于纳米纤维增强MXene还原氧化石墨烯气凝胶,巧妙地设计并制备了一种具有超高线性灵敏度的新型压阻传感器。
-
燕山大学王林课题组–Ni-Co层状双氢氧化物/磺化石墨烯纳米片复合材料的异质组装作为混合超级电容器的电池型材料
通过采用Ni-Co层状双氢氧化物 (LDH) 和磺化石墨烯纳米片 (SGN) 的异质组装策略,获得了具有静电相互作用的混合复合材料。根据带负电荷的SGN取代带正电荷的LDH主体板的层间硝酸根阴离子,可以增加混合复合材料表面上Ni3+的丰度,以加强混合复合材料内的静电相互作用。正如预期的那样,LDH与SGN的有效耦合确保了异构组件的均匀结合。混合复合材料的独特结构加速了电化学反应过程中的电子转移和离子扩散过程,有利于提高电池型电极的电化学性能。
-
Laser Photonics Rev.:一种提高石墨烯/p型硅异质结光电探测器探测率的简便方法
韩国浦项科技大学Byoung Hun Lee教授等通过用聚乙烯亚胺(PEI)掺杂石墨烯,将石墨烯/p型硅光电探测器的肖特基势垒高度从0.42 eV调制到0.68 eV,成功实现了探测率和暗电流的同时优化。在0.26 eV的势垒高度调制下,暗电流降低了三个数量级,从980 nA到219 pA,与未掺杂的石墨烯/p型硅光电探测器相比,850 nm处的探测率提高了529%。如此显著的性能提升证实,在器件制造之前对石墨烯进行化学掺杂是一种简单而高效的方法,可以提高异质结光电探测器的探测能力。
-
AM:金属桥接的石墨烯-蛋白超粒子用于对一氧化氮进行数字化传感
上海交通大学樊春海院士、南方医科大学徐峰教授、和密歇根大学Nicholas Kotov发现当利用Tb3+离子补充范德华相互作用后,GQDs中高度均匀的SPs可以实现成功的自组装。GQDs、Tb3+和超氧化物歧化酶(SOD)组装的SPs对NO的选择性也高于其他活性氮(RNS)和活性氧(ROS)。此外,SPs合适的尺寸与强发光结合使通过单粒子计数进行NO检测成为可能,使数字化的分析得以实现,并进一步提高检测限。利用SPs对呼吸中NO进行快速、无创的监测,可以实现多层面的健康监测。
-
上海理工大学《Energy Fuels》:重叠T‑Nb2O5/石墨烯混合体,用于具有高倍率容量的准固态非对称超级电容器
通过在GO纳米片之间嵌入T-Nb 2 O 5纳米线,开发了一种T-Nb 2 O 5 /rGO复合材料,以结合T-Nb 2 O 5特殊的嵌入拟电容行为和rGO良好导电性的优点。T-Nb2O5 /rGO杂化物具有高比容量、超长循环寿命和良好的倍率保持率,在高性能非对称超级电容器中显示出良好的应用前景。
-
安阳工学院–双离子缓冲池中的高性能非对称超级电容器:基于电池型分层花状Co3O4-GC微球和3D多孔石墨烯气凝胶
我们分别通过氮烯化学从石墨烯和具有甲氧基聚乙二醇 (mPEG) 的碳纳米管制备了G>N-PEGm纳米片和CNT>N-PEGm的二维大分子刷。由于采用典型的溶剂热方法,合成了Co3O4-G>N-PEGm-CNT>N-PEGm(Co3O4-GC)三元复合材料的分层花状球体,其呈现蜂窝状结构,作为“离子缓冲储层”和超薄2-4 nm Co3O4纳米片中的大量离子扩散通道。作为典型的电池型正极材料,Co3O4-GC在0.5 A g-1时可实现高达 173.3 mAh g-1的高容量(比电容可达到 1783 F g-1)。另一方面,由多孔石墨烯和酸改性的CNTc形成的3D多孔还原氧化石墨烯和羧基CNT气凝胶(HRGO-CNTc,表示为HRGC)在0.5 A g-1下为 282.3 Fg-1(78.4 mAh g-1),表现出优异的长循环性能。以先进的电池型Co3O4-GC为正极,3D HRGC气凝胶为负极,进一步制备了非对称超级电容器Co3O4-GC//3D HRGC能量器件的先进双“离子缓冲储层”,同时具有优异性能的非对称器件用于储能和能量转换潜在应用,在775 W kg-1的功率密度下表现出42.6 Wh kg-1的能量密度,在10,000次循环后81.1%的电容保持。
-
高性能计算机助力石墨烯生产工艺的优化
为了应对这一挑战,一支来自德国慕尼黑工业大学(TUM)的研究团队使用于利希超算中心(JSC)和莱布尼茨超算中心(LRZ)的JUWELS和SuperMUC-NG高性能计算机(HPC)通过模拟在液态铜中生成石墨烯的过程,试图寻找能够快速制备石墨烯的新方法。
-
清华大学朱永法课题组–石墨烯层封装 α-MnO2 纳米纤维调整表面电子结构用于有效分解臭氧
为了解决这些问题,这里开发了一种分级结构,即石墨烯封装的α-二氧化锰纳米纤维。优化后的催化剂在相对湿度为20%的条件下,臭氧转化效率稳定在80%以上,100小时内稳定性良好。即使相对湿度增加到50%,臭氧转化率也达到70%,远远超过纯α-二氧化锰纳米纤维的性能。
-
石墨烯膜最新Nature Nanotechnology!
本文设计了一种化学上坚固的纳米多孔石墨烯薄膜,并研究了在亚纳米限制下分子在各种有机液体中的传输。本文发现,溶剂的性质可以调节溶质在石墨烯纳米孔中的扩散,当孔径接近溶剂的最小分子横截面时,连续流就会破裂。通过对膜载体进行整体工程设计、模拟造孔和缺陷管理,实现了染料分子的高截留率和超快有机溶剂纳滤以及正己烷异构体的分离。这种膜在一系列溶剂中表现出稳定的通量,与流过大小与溶剂无关的刚性孔的情况一致。这些结果表明,纳米多孔石墨烯是一种丰富的材料体系,可以控制亚连续流,这种膜能够满足一系列具有挑战性的分离需求。
-
西科大等《ChemistrySelect》:电化学沉积法制备柔性石墨烯纸/MnO-2集成的复合电极作为柔性超级电容器
研究提出了一种快速方便的方法,通过简单的一步法大规模制备石墨烯纸(GP)作为柔性集流体。通过电化学沉积方法获得了GP和MnO2集成的复合电极作为柔性超级电容器,无需使用粘合剂或导电剂。
-
北大庞全全Joule综述:如何设计锂硫电池电解液?
尽管锂硫(Li-S)电池有望为下一代储能系统提供高能量密度,但其仍然存在许多挑战。Li-S电池遵循一种转换化学,这与基于插层的锂离子电池有根本的不同。研究发现,电解质溶液的化学组成及其对硫还原形成的多硫化物Li2Sx物种的稳定能力对Li-S电池的能量密度和循环性能起着至关重要的作用。