浙江大学

  • 湖北利川籍教授高超研发石墨烯多功能复合纤维引领未来穿戴

    “一块石墨矿,如何变服装?还能让百姓穿出健康来。”3月18日,在上海国家会展中心举办的杭州高烯科技有限公司第四代“康护”纤维发布会和石墨烯纤维标识设计大赛、中国国际烯丝纺织服装设计大赛启动仪式上,湖北利川籍浙大教授、高烯科技首席科学家高超,向大家详细介绍第四代康护纤维,单层石墨烯多功能复合纤维时说。

    2021年3月19日
    232 0 0
  • 浙江大学许震《ACS Nano》:揭秘石墨烯宏观组装强度的“尺寸困境”起源

    浙江大学高分子系许震研究员以氧化石墨烯膜的制备过程为实验模型,发现了尺寸效应由二维片的褶皱特征决定,提出了二维大分子溶液干燥过程中的“趋肤皮层褶皱”是尺寸困境的形成原因,发现了皮层褶皱遵循薄板屈曲的变形机制;同时利用“插层塑化拉伸”方法进行了褶皱重整,消除了反尺寸效应,明确了氧化石墨烯膜材料的“大尺寸带来高强度”的正尺寸效应。这一工作阐明了二维大分子组装材料的“尺寸困境”的结构与形成起源,回答了以往研究中对尺寸效应的矛盾认识,同时也开启了对二维大分子材料中褶皱构象与凝聚结构进行精确分析的新思路。

    2021年3月10日 科研进展
    79 0 0
  • 国内最大单层氧化石墨烯项目可研评审

    单层氧化石墨烯及石墨烯改性尼龙6项目占地100亩,新上年产100吨单层氧化石墨烯生产线、年产3000吨石墨烯改性尼龙6生产线,打造国内最大的单层氧化石墨烯供应商。项目属于国家政策鼓励发展的高新技术产业,符合山西省转型发展蹚新路的工作要求,契合华阳集团“127”发展战略。

    2021年1月8日
    177 0 0
  • 薄衫可耐三九寒 记者带你走进保暖“黑科技”前沿

    如今,“黑科技”走进了现实。本报记者专访了浙江大学化学工程与生物工程学院教授柏浩、信息电子工程学院教授林时胜和高分子系教授高超,带大家走进保暖科学的最前沿。

    产业新闻 2021年1月8日
    131 0 0
  • 浙大高超、许震团队:石墨烯纤维的又一独特性能——中红外发射和探测

    该工作探索了宏观石墨烯纤维在中红外区域的发光和探测性能,并基于此构建了首套纤维基双向中红外通讯系统。该研究展示了石墨烯宏观材料在中红外光电子器件通讯领域的应用潜力。

    2020年12月14日 科研进展
    560 0 0
  • 浙江大学许震、高超团队:以氧化石墨烯为例初绘二维大分子构象工程蓝图

    2D大分子的出现带来了两个重要的基本问题:(1)对高分子科学领域来说,需要建立对2D大分子的行为及凝聚态深入的理解,理清新的2D拓扑维度与传统线性大分子的普遍性以及自身的特异性; (2)从二维材料的应用来看,需要一种普适系统的方法来指导其材料的精确制造,以期实现颠覆性的性能突破。

    2020年11月25日 科研进展
    125 0 0
  • 浙大许震与清华徐志平合作:二维大分子溶液构象标度关系的测量与验证

    浙江大学高分子系许震研究员联合清华大学徐志平教授团队以单层氧化石墨烯为实验模型,采用毛细管流变学方法测定了二维大分子在良溶剂中构象-尺寸的标度关系。

    2020年11月25日 科研进展
    167 0 0
  • Science Advances: 水塑性发泡技术制备石墨烯气凝胶

    由固体直接发泡是制造多孔材料的最有效方法。然而,发泡技术很难用于制备纳米颗粒的气凝胶,因为其固体的可塑性被压倒性的界面相互作用所否定。有鉴于此,浙江大学的高超教授、刘英军副研究员、许震研究员等人,发明了一种溶致塑化发泡的方法,将氧化石墨烯固体直接转化为气凝胶块和微阵列。

    2020年11月13日
    281 0 0
  • 浙大高超教授团队《Sci. Adv. 》:常温发泡法连续制备石墨烯气凝胶及其AI应用

    浙江大学高分子系高超教授、许震研究员、刘英军副研究员团队揭示了二维氧化石墨烯片层的溶致塑性,提出了“溶致塑化发泡”的方法实现了石墨烯气凝胶的大规模连续化与高精度微型化制备,可比拟聚合物泡沫的“热塑发泡”制备方法。同时,“溶塑发泡”的石墨烯气凝胶具有与聚合物泡沫同样优异的机械稳定性。团队与浙江大学体育系彭玉鑫研究员合作,开发了超灵敏的石墨烯气凝胶微阵列触觉传感器,通过人工智能算法,石墨烯气凝胶手指传感器展现了超出人手的触觉灵敏度。

    2020年11月12日 科研进展
    271 0 0
  • 浙江大学和德国马普所Adv. Mater.: 石墨烯纳米带——表面合成与电子器件的集成

    石墨烯纳米带(GNR)是准一维的石墨烯条带,作为一类新型的半导体材料,已在电子器件和光电器件领域获得广泛应用,引起了人们的广泛关注。 GNR表现出独特的电学和光学特性,这些特性强烈依赖于其化学结构,尤其是宽度和边缘构型。因此,具有化学精确结构的GNR的可控合成对其基础研究和器件应用至关重要。相较于自上而下的方法,利用预先设计的分子前驱体通过自下而上的方法可以合成具有原子级精确的GNRs。

    2020年10月6日 科研进展
    304 0 0