闪蒸

  • 华南理工大学ACS AMI:焦耳热高效制备高热导率石墨烯薄膜

    首先,通过两步化学还原法对氧化石墨烯进行预处理,增加层间距并建立气体逸出通道,避免快速还原过程中气体释放对薄膜结构的破坏。随后,将预处理的氧化石墨烯薄膜夹在两层石墨板之间,利用焦耳热效应进行快速高温还原,并通过控制加热速率,实现缓慢升温至2500°C,有效避免薄膜破裂。

    2024年10月21日 科研进展
    79100
  • 从垃圾到全球市场,石墨烯“逆袭”!

    事实证明,与其他块状石墨烯生产方法相比,闪蒸焦耳加热 (FJH) 工艺可以生产出高质量的闪蒸(薄片)石墨烯 (FG),可减少 90% 以上的碳和水足迹;更不用说它比其他回收方法更具成本效益。

    科研进展 2024年10月20日
    59700
  • 深圳大学/山东理工大学Flatchem综述:闪蒸焦耳加热技术在二维材料以及其他领域的应用

    本综述详细阐述了闪蒸焦耳加热(FJH)技术在二维材料合成、金属回收、石墨和正极材料再生以及贵金属回收等方面的最新进展。FJH技术以其快速的加热和冷却能力、高能量利用效率、短合成时间以及显著降低的能耗,为二维材料的合成和电池材料的回收提供了新的解决方案。这些优势不仅为提高碱金属离子电池的能量密度和循环稳定性提供了新的思路,而且为推动FJH技术的产业化应用提供了理论依据。

    2024年10月15日 科研进展
    1.3K00
  • 石墨烯新进展:闪蒸焦耳热铅笔芯秒变石墨烯

    本研究旨在通过使用铅笔芯作为前驱体,探索 FJH 技术在石墨烯合成中的应用。通过调整铅笔芯中的石墨与粘土比例,优化 FJH 工艺参数,进一步提高石墨烯的产量和质量。

    2024年9月18日
    74100
  • 煤炭绿色升级:闪蒸石墨烯在环氧树脂中的高负载应用,显著提升力学性能

    通过闪蒸焦耳加热技术将冶金焦炭转化为高质量的闪蒸石墨烯,并将其以高负载比例(20-50%)掺入双酚A环氧树脂中,成功制备出力学性能显著增强的石墨烯-环氧复合材料。研究表明,这种复合材料在杨氏模量、硬度、抗压强度、最大应变和韧性方面均有大幅提升,同时通过替代部分环氧树脂,还显著降低了生产过程中的环境影响。这项技术展示了石墨烯在工业应用中的巨大潜力,为煤炭材料的绿色应用提供了新的途径。

    2024年8月28日
    50000
  • 一步合成法:等离子体辅助电爆炸技术合成金属-石墨烯纳米复合材料

    研究了一种通过电爆炸法合成结构可控的金属-石墨烯纳米复合材料的新方法,揭示了电爆炸过程中产生的冲击波和等离子体辐射在不同条件下对纳米复合材料结构形成的影响。研究结果表明,通过调整电压条件,可以有效控制纳米复合材料的结构形态,从表面修饰到核壳结构再到复杂的混合纳米颗粒,为金属-石墨烯纳米复合材料的可控合成提供了新的思路,具有重要的应用前景。

    2024年8月21日
    58100
  • 不到1秒,废塑料变石墨烯!

    大多数块状石墨烯是通过自上而下的方法通过剥离石墨而产生的,通常需要大量溶剂以及高能混合、剪切、超声或电化学处理。虽然石墨化学氧化为氧化石墨烯可以促进剥离,但它需要苛刻的氧化剂,并且在随后的还原步骤中会使石墨烯具有有缺陷的穿孔结构。该公司的研究表示,对许多廉价碳源(如煤、石油焦、生物炭、炭黑、废弃食品和混合塑料废物)进行FJH可以产生乱层石墨烯(TG)。该过程不使用熔炉,也不使用溶剂或反应气体。从结构角度来看,该过程产生的“乱层石墨烯”结构与“石墨烯纳米片”更接近。

    2024年8月21日
    50200
  • “百园百校万企”创新合作行动——徐州高新区成果转化对接活动圆满举办

    中国矿业大学的专家学者代表分别就《钙钛矿光伏电池与器件》《燃烧在线监控及智能发电技术》《高端矿山智能运输装备研发及应用》《激光显示高端膜材料研发》《超高温焦耳热闪速制备锂电石墨烯导电剂》进行了项目路演。

    2024年8月17日
    41700
  • 加入深圳中科精研科技,2024年英才招聘火热进行中!

    深圳中科精研科技有限公司成立于2021年,是一家主要专注于高温加热及快速冲击设备的研发、生产、销售和安装服务的高新技术企业。公司的代表产品包括HTS焦耳超快加热装置、HTL高温长时加热装置以及FJH闪蒸装置,这些设备在实验室超高温实验解决方案方面起到了核心作用。公司的设备已被广泛应用于能源催化材料、电池材料、石墨烯等二维材料、高熵合金、高性能化合物和陶瓷材料等领域,为材料的超快速高质量制备提供了有力的技术支持。

    工作机会 2024年8月13日
    54200
  • 莱斯大学James Tour最新Nature Chemistry:克级固态材料的级联闪合成

    本研究报道了一种创新的合成技术——级联闪蒸焦耳加热(FWF),该技术以其非平衡态、超快速热传导的特性,突破了传统合成方法的局限。FWF技术在合成协议的三个关键领域——减少溶剂和水的使用、提高能源效率和可扩展性方面展现出巨大潜力。通过超快电阻焦耳加热实现的非平衡合成,与传统需要长时间高温的合成过程相比,FWF技术能在毫秒至分钟级时间内显著降低能耗。

    2024年8月10日 科研进展
    59000
  • 詹姆斯库克大学《Small Science》:费塑料瞬间制备石墨烯及其环境应用

    合成材料的拉曼光谱显示出石墨烯基材料的光谱特征,并显示出缺陷和氧含量。X 射线衍射显示了石墨晶格的特征,层间距稍大,这归因于插层官能团。X 射线光电子能谱证实 sp2 杂化碳是主要成分。高分辨率透射电子显微镜可深入了解多层结构和层间距的变化。与氧化形式的石墨烯相比,合成的原始石墨烯吸附全氟辛酸的效率几乎高出十倍,但与石墨烯基纳米复合材料相比,吸附效率略低。

    2024年8月9日 科研进展
    52700
  • 山西大学《AFM》:闪焦耳加热法煤基石墨炭结构升级及应用

    结果表明,煤化程度高的无烟煤在峰值温度约3300 K时往往会形成高度石墨化的碳材料,在电容储能方面具有较高的速率能力(30Ag-1 时的容量保持率为79.1%)和较低的弛豫时间常数(τ0= 0.27s)。此外,从褐煤和烟煤中提取的低煤级闪速碳材料显示出更好的电容性能,在1Ag-1时容量超过80Fg-1。这项研究证明,FJH 技术在将煤炭转化为有价值的碳材料方面具有巨大潜力。

    2024年8月9日 科研进展
    75100
  • 电磁波吸收的创新:碳热冲击法分解MOFs制备超细ZrO₂/石墨烯复合材料

    国防科技大学通过创新的碳热冲击法(CTS)制备了ZrO2/石墨烯复合材料,展现了优异的电磁波吸收性能和热稳定性。研究发现,通过精细控制纳米结构和组分,复合材料在广泛的频带内具有显著的吸收特性,适用于高温环境下的电磁波屏蔽应用。

    2024年8月5日
    91500
  • 突破性卷对卷工艺:两步快速焦耳热制备大面积石墨烯薄膜

    本文提出了一种快速、连续的石墨烯薄膜制备方法,即通过焦耳加热化学还原的氧化石墨烯膜,并集成高通量的卷对卷工艺。这种方法不仅能快速制造石墨烯薄膜,而且在能效和成本方面具有明显的优势

    2024年8月2日
    1.2K00
  • 1050°C0.8s电热冲击焊接碳纳米材料/玻璃纤维界面

    电热冲击技术利用碳纳米结构的高接触电阻产生的高温焦耳热和碳纳米材料的快速热响应,能够在局部区域熔化玻璃纤维,形成碳纳米材料与基体材料之间的强韧机械结合。这种技术不仅保持了玻璃纤维的原始机械性能,而且由于其超快的加热速率(超过1000°C/s),在短短几秒内即可完成纳米焊接过程,对材料的热影响降到最低。此外,电热冲击技术表现出卓越的性能,并且有潜力降低成本,提供了一种连续、超快、能效高且可卷对卷的制造过程,成为跨尺度制造领域中一种有前景的加热解决方案。这项技术的提出,不仅推动了纳米材料在宏观结构中的应用,也为先进复合材料的发展提供了新的制造策略。

    2024年7月29日 科研进展
    52300
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部