科研进展
-
超显微镜观察到锂离子在双层石墨烯中迁移 为理解纳米电池提供新视角
德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。
-
“迷宫”式垂直石墨烯网络,构建超灵敏可拉伸应变传感器
作者采用具有迷宫状网络形貌的垂直取向生长石墨烯纳米片为导电介质,通过夹心式器件结构设计,实现了可拉伸、高灵敏应变传感器件的构筑。该新型柔性传感器件在监测人体脉搏、肌肉运动等细微动作以及大运动幅度手指关节旋转等运动方面展现优异的实用性,在柔性可穿戴电子器件方面具有极大的应用前景。
-
我国学者成功构建石墨烯泡沫材料网络拓扑模型
近期,中科院合肥物质科学研究院等机构的学者们合作,通过研究石墨烯泡沫的扫描电子显微镜镜像,成功构建了一种三维孔片网络拓扑模型,并引入参数和几何量实现了对其力学行为的有效评估。国际知名学术期刊《美国化学会·纳米》日前发表了该成果。
-
曼大发明石墨烯强化天然黄麻纤维复合材料 或替代汽车工业、低成本住房领域合成材料
曼彻斯特大学的科学家们将石墨烯和天然纤维黄麻结合在一起,创造了世界上第一个石墨烯增强天然黄麻纤维复合材料。该研究成果是制造高性能和环保的天然纤维复合材料的一大突破,石墨烯黄麻复合材料可以替代主要制造领域的合成材料,例如汽车工业,造船业,耐用风力涡轮机叶片和低成本住房。
-
石墨烯制成的红外成像器械有望用到自动驾驶汽车上
石墨烯制成的红外成像器械有望用到自动驾驶车上。昨日,2018海峡两岸(重庆)青年创业研讨会在南坪国际会展中心举行。研讨会上,中科院重庆绿色智能技术研究所研究员史浩飞透露了石墨烯的新研究动向。
-
先进制造所成功构建石墨烯泡沫孔片网络拓扑模型
由于泡沫材料本身的结构复杂性限制了理论研究手段的施展,已有的计算模型皆由完美的石墨烯堆砌而成,而实际石墨烯泡沫是由含有本征缺陷或孔洞的真实石墨片通过化学或物理铰链固结而成的层级多孔结构,这就造成了理论与实验的严重脱节。
-
新研究发现改进石墨烯材料性能的途径
一项新研究发现,石墨烯的纯度问题可能是限制这种新材料广泛应用的一个障碍。减少石墨烯中的硅污染有望提升其性能表现,充分发挥石墨烯在工业界的应用潜能。
-
温州大学报道高回弹高硬度三维多孔石墨烯
温州大学的王舜课题组联合美国阿贡国家重点实验室的陆俊研究员创造性地提出了基于-Si-O-C-化学键共价桥连促进石墨烯三维有序组装的新方法,实现了单层氧化石墨烯片在油-水两相界面上的原位还原和同步三维共价组装,可控构筑了高强度的三维互通纳米多孔结构的泡沫状石墨烯宏观体。
-
Small Methods: 原子级分散的亲锂CoNx位点诱导金属锂形核
清华大学张强教授课题组采用原子级分散CoNx位点的双掺杂石墨烯材料作为骨架材料,有效调控金属锂的形核行为,抑制金属锂的枝晶生长。
-
AEM:原始态or缺陷态?石墨烯结构对金属锂沉积的影响
本文首次研究了石墨烯载体的结构和化学状态对于金属锂负极沉积-剥离的影响。由于高缺陷态的石墨烯会促进不稳定SEI膜的生长,因此石墨烯结构缺陷和化学缺陷对于金属锂负极来说都是不利的。缺陷的存在会消耗碳酸酯电解液中的FEC添加剂,造成库伦效率下降和锂枝晶的生长。
-
东京大学和美加州大学欧文分校成功将石墨烯变成拓扑绝缘体
此次,研究小组在石墨烯上微量散布由铋和碲等重原子组成的超小颗粒,利用量子隧道效应成功导入了自旋轨道相互作用,通过控制从外部施加的电压,形成了拓扑绝缘体状态。研究小组通过导电性测量和状态密度测量确认了这种状态。此外还利用第一性原理计算进行验证,首次确认石墨烯变成了拓扑绝缘体。
-
氧化石墨烯相互作用界面的质子转移
通过对氧化石墨烯诱导的自组装单层界面水和特征碳基振动峰的深入分析,他们发现氧化石墨烯能够吸附到自组装单层表面并质子化单层膜。令人意外的是,这种质子化单层膜的能力并不会随体系缓冲能力的提升而消失,与小分子有机酸(如甲酸)的行为是完全不一样的。
-
浙江大学高超团队:石墨烯基础研究与应用开发
2013年第十二届浙江省青年科技奖获得者。浙江大学高分子科学与工程学系教授、博士生导师,高分子科学研究所所长。主要从事石墨烯材料研究。2013年获得国家杰出青年基金资助,2014年入选科技部“创新人才推进计划中青年科技创新领军人才”,2015年入选国家“万人计划”科技创新领军人才。
-
伊朗科学家用石墨烯超表面作为时间透镜来进行太赫兹超快信号处理
该设计的基本原理是,假定在太赫兹波段,石墨烯的表面电导率与其费米能级成正比,那么通过改变费米能级,就可以改变入射电磁脉冲的时间相位特性,而费米能级本身又是电压的函数。基于这个事实,研究团队设计出了二次时间相位调制器(quadratic temporal phase modulator),亦即所谓的时间透镜。这种相位调制被应用于处理时域中的冲击脉冲信号。太赫兹时间透镜是超快时域脉冲处理系统中的关键元件。
-
MIT告诉你,如何大规模生产细胞大小的机器人
从本质上讲,syncell本身并不是机器人,而是一种装载微型电子器件的容器结构。麻省理工学院的Michael Strano教授领导的研究团队推出的这项成果,正是用极为高效、精确的方法,让石墨烯材料批量生成这种微型容器。