传感器
-
6 月 18 日网络研讨会–石墨烯:兑现承诺
20 年后的今天,我们看到了石墨烯带来的新型传感器,它们具有超高的灵敏度、环境耐受性和可重复性。本次 Paragraf 网络研讨会由The Graphene Council主办,将展示石墨烯最初的承诺是如何在今天通过商业化的标准化和定制设备得以实现的。
-
先进材料技术AMT:全水性纳米结构硫醇-烯/还原氧化石墨烯湿度传感器:具有卓越选择性的环境友好型创新传感材料
该研究通过一种稳健的全水性原位微型乳液聚合方法,成功制备了具有杰出选择性的湿度传感器。这种方法不仅减少了对环境的负面影响,而且所选用的硫醇-烯聚合物和含量在0.2-1.0 wt%范围内的rGO,展示了在湿度暴露下的高耐水性和半结晶特性,有助于防止早期分层。
-
济南大学张丛丛副教授、刘宏教授、山东大学韩琳教授AFM综述:石墨烯场效应晶体管在生物检测领域的最新进展
首先,我们介绍场效应晶体管的基本概念和固有特征,特别关注 GFET 的独特性能以及 GFET 生物传感器的评价参数。接下来,我们将研究 GFET 如何发挥生物传感器的功能,重点关注传感机制的具体方面。随后,我们介绍了具有代表性的实例,这些实例强调了提高基于 GFET 的生物传感器性能的成功策略。然后,在多学科方法优势的指导下,我们深入探讨了使用 GFET 阵列进行多通道检测的最新进展。最后,我们预测了这一领域的未来发展方向。
-
用于柔性设备的可持续石墨烯浆料
Siva Sankar Nemala 是 INL 的研究员,也是该论文的第一作者,他解释了该方法:”我们的方法基于使用高剪切混合和高压无气喷射技术对水中的石墨进行剥离。然后将石墨烯材料与炭黑和天然粘合剂结合,形成一种环保型复合浆料,可用于制造完全柔性的高性能微型超级电容器”。
-
仿生皮肤新策略:触感超灵敏,痛感可调节
在微观层面上,石墨烯纳米片层依次通过横向电分离和纵向电接触响应触觉向痛觉的转变,并表现出电流反向突变行为。
-
东华大学朱美芳院士/潘绍武研究员:水性石墨烯分散液用于多功能纤维基传感器和发光器件
通过浸渍GNS/PSS分散液制备高导电聚酰胺6(PA6)纤维电极,再逐层喷涂发光层及其他功能层,构建同轴电致发光纤维,其驱动电压低至1 V/μm,亮度达50.08 cd/m2(图4)。作为概念验证,这种纤维发光器件能够集成在潜艇模型的表面,为潜艇在执行复杂任务时提供水下环境照明,展现出在深海研究领域的应用潜力。这将进一步拓展其在人体健康监测领域的应用范围。
-
巴斯大学科学家开发出新型无电池乳酸传感器
论文中提到的 “石墨烯泡沫”,即化学传感器的基础技术 Gii-Sens,是由 Integrated Graphene 公司生产的一种电极。Gii-Sens 采用了 Gii™,这是一种纯净、多孔的三维碳纳米结构,成本低,避免了使用金等不可持续的贵金属。
-
Integrated Graphene 任命 Jo Holmes 博士推动 Gii-Sens 的发展
Gii-Sens 提供了一种更灵敏、更环保、更经济实惠的传感器。基于 Integrated Graphene 正在申请专利的 Gii 纳米材料,该材料由纯碳组成,生产过程中不使用任何有毒材料,可用于各种传感器类型,包括护理点诊断设备。
-
主动电子皮肤:实现环境触觉交互的理想界面
北京航空航天大学虚拟现实技术与系统全国重点实验室王党校教授团队在npj Flexible Electronics期刊上发表了一篇题为“Active electronic skin: an interface towards ambient haptic feedback on physical surfaces”的研究文章,详细介绍了主动电子皮肤(Active electronic skin,AE-Skin)的概念、关键技术、潜在应用及未来发展。
-
Biosensors&Bioelectronics:多功能激光诱导石墨烯电路和激光打印纳米材料用于无创人体肾脏功能监测
采用激光诱导的具备亲水-疏水界面的激光诱导石墨烯电路用于制备平面三电极电路。激光可以在聚酰亚胺基底上分别诱导生成亲水的疏水的石墨烯,使得三电极传感区域亲水,而电路部分疏水。这样的设计可以使汗液吸附在传感区域,防止汗液向电路部分倒流造成信号干扰。

-
“未来感科技:石墨烯与碳纤维通用应力传感器的研发探索”
综上所述,利用石墨烯中G峰位移和单轴应变劈裂的知识来解释各种CF类型的力学响应。对于偏振测量,精确测定G峰位移和应力分裂是评估石墨烯单元(或堆叠)相对于纤维(应变)轴的平均方向,以及在某些情况下相对于光学蒙皮模量的平均方向的途径。通过比较石墨烯和碳纤维的结果,建立了石墨材料G峰位移与应力或应变的通用关系图。换言之,声子变形(原子尺度)以相同的方式标度到施加应力(宏观尺度)范围内具有不同模量但相关形貌的CFs。
-
一个世纪理论的新转折提升了生物启发材料高效传质的潜力
研究人员利用石墨烯气凝胶证明了他们的理论。他们通过控制材料中冰晶的生长,精心改变了孔隙的大小和形状。他们的实验表明,遵循新提出的通用Murray定律的微观通道对流体流动的阻力最小,而偏离该定律的通道则会增加流动阻力。
-
塞浦路斯研究中心率先开展医疗诊断项目
MultiLab 项目旨在通过创建任何人都能快速使用的易用型传感器来解决这些局限性。MultiLab 项目由 CyRIC 负责协调,是欧盟地平线欧洲计划的一部分。该项目于 2024 年 1 月 1 日启动,为期四年。
-
浙大高超课题组《Small》:高柔韧性和超弹性石墨烯纳米纤维气凝胶,用于智能手语
这种机械稳健性源于其跨尺度多孔结构,该结构由双曲微孔和多孔纳米纤维组成,具有较大的弹性变形能力。研究进一步揭示了柔性和超弹性GNFA 作为电传感器在检测拉伸和弯曲变形方面表现出的高灵敏度和超稳定性。将GNFA 传感器安装到人的手指上,并通过多层人工神经网络实现了高精度的手语智能识别,就是最好的证明。这项研究提出了一种高柔性、高弹性的石墨烯气凝胶,可用于传感器技术中的可穿戴人机界面。
-
Tachmed 与伦敦大学圣乔治学院合作
“远程健康监测仍处于起步阶段,传统的监测设备主要用于测量体重、血压、血氧水平和血糖。Tachmed 系统在此基础上增加了高质量诊断功能,大大扩展了可在家中进行的健康检测范围,并可与全科医生或医院直接连接。这就避免了不必要的全科医生就诊,加快了治疗速度,特别是对于那些生活繁忙或行动不便的人来说。