光电器件
-
北京大学,Science!
石墨烯的独特性质使其在电子、光电子和能源存储等领域具有广泛的应用潜力,但高昂的生产成本和技术瓶颈阻碍了其大规模商业化。因此,开发与现有制造工艺兼容的生产流程至关重要,这不仅可以降低成本,还能提高生产效率。此外,建立统一的行业标准和高通量表征技术对于确保产品质量和性能一致性也是必要的。这将有助于推动石墨烯及其衍生物的产业化进程,使其更快地应用于实际产品中,满足市场需求。
-
石墨烯非线性热狄拉克电子的超快控制:国际合作
这项研究发现了一种控制基于石墨烯的场效应晶体管中高次谐波产生的新方法。研究小组研究了晶格温度、电子掺杂以及全光超快调谐六方氮化硼封装石墨烯光电器件中三次谐波产生的影响。
-
2024, Nature Communications——高维光学信息一体化解码:揭秘超表面助力石墨烯光探测器
在这里,我们采用了超表面辅助石墨烯光电探测器,能够同时检测和区分宽带光(1-8μm)的各种偏振态和波长,波长预测精度为0.5μm。
-
这个石墨烯,登完Nature,Nature Materials,再登Science子刊!
概念验证实验结果显示,在一个16平方微米的MATBG器件中,单个红外光子的吸收能够完全破坏超导态。这一发现不仅揭示了MATBG与光子的相互作用机制,还为使用莫尔超导体开发革命性的量子设备和传感器提供了新的路径。
-
Nature Communications | 复旦大学:二维材料集成方法助力新一代中波红外光电探测器!
通过将MoS₂和黑磷(BP)等二维材料与石墨烯结合,本文开发的光伏探测器不仅实现了高效的MWIR光探测功能,还集成了超快闪存和计算能力。这种集成创新打破了传统MWIR探测器对冷却需求的限制,提供了高响应性和低功耗的解决方案,对便携式和低成本的红外成像系统具有重要意义。

-
Nano Lett.:铁电极化驱动石墨烯的非易失性电-光响应
有鉴于此,近日,西湖大学李兰研究员团队通过将石墨烯-Al2O3-In2Se3异质结与微环谐振器(MRRs)集成,开发了非易失性电-光响应。在这种紧凑的器件中,石墨烯的光学吸收系数被α-In2Se3中的面外铁电极化大大调节,从而在MRRs中实现非易失性光传输。这项工作表明,将石墨烯与铁电材料相结合,为开发用于光学神经网络等新兴应用的光子电路中的非易失性器件铺平了道路。
-
Physics Reports | 重磅!二维材料在光电探测中的创新与应用前景!
首先,作者全面分析了几种代表性的2D材料,包括石墨烯、黑磷和过渡金属二硫化物(TMDCs)。这些材料不仅具有丰富的能带结构和光学性质,还能够在广泛的波长范围内实现高效的光电响应,甚至涵盖中红外和太赫兹波段。其次,作者深入研究了2D材料与硅光子器件的集成方法和大规模制备策略。由于2D材料的原子级厚度和良好的柔韧性,它们能够与成熟的CMOS加工技术完美结合,可以在硅光子结构上实现大规模集成,从而显著提升光电探测器的性能和可靠性。最后,作者重点探讨了这些新材料在现代通信技术中的多样化应用,包括室温成像、视觉传感器、光谱仪和测距系统等。这些应用展示了2D材料在不同领域的广泛应用潜力,进一步证明了其在光电子集成领域的重要性和可行性。
-
中佛罗里达大学物理系毕业生因光子探测技术的创新荣获国际奖
Chanda 说:”在Tianyi Guo博士的工作范围内,他展示了两种创新方法,旨在推动下一代 LWIR 探测器和相机的发展。”这些方法旨在提供高探测率、快速响应时间和室温操作。第一种方法是利用纳米结构石墨烯上的高移动性电子来创建一个光热电探测器。第二种方法详细说明了如何使用集成了相变材料的振荡电路,以及如何利用红外照明对频率进行调制,以实现近红外探测。
-
华东理工大学方海平Carbon:基于简单超声混合技术实现的石墨烯氧化物电荷转移掺杂用于高响应性光电探测器和高效图像提取的创新研究
在这项研究中,研究人员提出了一种创新的电荷转移掺杂策略。他们通过将石墨烯氧化物(GO)悬浮液与2,3,5,6-四氟-7,7,8,8-四氰基喹啉二甲烷(F4TCNQ)简单混合,并结合超声波处理,成功制备了F4TCNQ-GO复合薄膜。这种复合薄膜在650纳米波段的光响应性达到了惊人的1.57 × 10^3 A/W,超越了过去十年中报道的大多数基于GO/石墨烯的光电探测器。
-
四通道石墨烯光接收机
该研究实现了零偏压石墨烯光电探测器的阵列集成,展示了高质量机械剥离石墨烯和低接触电阻的石墨烯-金属边接触应用于规模化光子集成回路的可能,对提升面向链路级的石墨烯光电探测器的器件性能具有重要指导意义,同时,为CVD生长石墨烯和机械剥离石墨烯应用于硅基光子集成回路提供了一种高一致性策略,可以促进基于石墨烯的硅基有源光子集成芯片的发展。
-
松山湖材料实验室新型光电功能 材料与器件团队拟招聘博士后若干名
研究方向:二维材料制备与表征(mos2、ws2等);新型光电器件制备与表征,包括光电探测器、忆阻器等;神经形态光子学(基于2d光电子):computing in sensor,computing in memory。
-
SYDE研究团队荣获IEEE NANO 2024最佳学生设计奖
该团队的演讲“柔性石墨烯/PEDOT:PSS 独立式红外光电探测器”以其卓越的质量和开创性的方法吸引了评委们。该项目因其独创性和对未来技术应用的潜在影响而脱颖而出。
-
二维干货:二维光电探测器在芯片集成中的应用(二)!
本章节将深入探讨二维材料光电探测器在测距、光谱仪、光子集成电路(PICs)以及光信息接收器中的应用。这些技术不仅在科研领域具有重要意义,在实际应用中也将带来革命性的改变。二维材料的高灵敏度、快速响应和灵活性使其成为理想的选择,特别是在要求高精度和高效率的测距和光谱仪中。光子集成电路(PICs)和光信息接收器的集成更是展现了二维材料在未来通信和信息处理技术中的广阔前景。
-
Light | 太赫兹发射谱:二维材料物理的新视角
倾斜入射光的入射角,石墨烯等具有中心对称结构的材料也会产生太赫兹发射,这被归因于光拖曳效应(photon-drag effect):在非热电子和空穴数量的不对称分布下,斜入射的飞秒光泵浦脉冲的有限面内光子动量转移到电子空穴对,导致价带和导带之间产生非垂直跃迁,进而产生非零位移电流偶极子和太赫兹发射。和水平生长的多层石墨烯相比,垂直生长石墨烯的太赫兹发射具有更高的效率。
-
超短石墨烯等离子体波包的电学产生、传播控制和检测 为实现太赫兹频率的超高速信号处理做出贡献
成功地以电子方式产生并控制了最短脉冲宽度为 1.2 皮秒的石墨烯等离子体1 波包2 的传播。这一结果表明,太赫兹信号的相位和振幅可以通过石墨烯等离子体进行电子控制。它使太赫兹信号处理方法有别于使用晶体管的传统电路技术,有望为今后实现超高速信号处理做出贡献。