材料分析与应用
-
北京科技大学《Green Chem》:石墨烯屏蔽层助力锂离子电池实现耐氧石墨负极
我们开发了一种基于rGO的理性设计氧气阻隔屏障,将其应用于石墨负极,有效缓解了LRMO全电池中氧气穿透引起的性能衰减。该rGO屏蔽层展现出三重功能:(1) 通过立体位阻实现选择性氧气阻隔(层间距:0.32–0.34 nm);(2) 通过边缘缺陷维持锂离子渗透性;(3) 通过抑制寄生氧-电解质反应增强界面稳定性。
-
里约热内卢天主教大学《ACS APM》:石墨烯增强PVC/PMMA柔性基板,用于薄膜太阳能电池
本研究采用不同配比的PVC/PMMA/DOP共混体系(含/不含乙二醇添加剂),旨在合成兼具柔韧性、耐热性和机械强度的聚合物混合物,以开发适用于柔性III-V族太阳能电池基底的材料。通过多种方法对这些共混物进行全面表征,评估其固有化学、机械和热学特性,以理解在作为III-V族薄膜材料支撑层前后所观察到的宏观力学行为。
-
哈工大(威海)《AMT》:新方法!三维多孔石墨烯泡沫热界面材料,用于电子热管理领域
通过发泡过程中调控压力实现孔隙结构控制,制备出兼具高可压缩性与低热阻的超轻三维多孔石墨烯TIM。制备的氧化石墨烯泡沫兼具超高压缩率(94.85%)、低密度、低热阻(100 psi压力下0.151 cm²·K/W)及卓越的平面温度均匀性,同时能完美贴合复杂耦合界面。在20-30W散热功率下,相较于商用导热垫(5W/m·K),该材料可显著降低芯片温度(8.83-13.3°C)。此外,该导热材料的可制造性为新一代高功率密度电子设备开辟了极具前景的导热界面材料制备新途径。
-
日本研究所《Adv Sci》:互联多孔石墨烯膜电极,用于高功率长周期锂氧电池
研究采用非溶剂诱导相分离法,以聚丙烯腈(PAN)为碳支架、聚乙二醇(PEO)为牺牲孔隙剂,制备出具有高度互联巨孔网络的自支撑石墨烯基电极。PEO的选择性分解形成空间互联的巨孔结构,有效降低了曲折度。所得电极使锂氧电池在稀释电解液条件下,于1.0 mA cm−2电流密度下实现>2500 mAh g−1的能量密度。仅使用3.25 g Ah−1电解液即可在4 mAh cm−2电流密度下保持稳定循环,并在1.5 mA cm−2条件下经受90次循环仍保持高倍率性能。
-
杭电《ACS AEM》:受玫瑰花启发!基于石墨烯/R-PDMS的应变传感器,用于人体运动监测和手势识别
研究受玫瑰花瓣的结构启发,本文通过简易的反向成型与刮刀涂覆技术,开发出高性能石墨烯/聚二甲基硅氧烷(简称Gr/R-PDMS)应变传感器。涂覆的石墨烯主要分布于R-PDMS顶面,形成由玫瑰花瓣拓扑结构调制的六角形网络结构。通过分析不同应变条件下的裂纹演化过程,有效阐释了电子流动的方向性并揭示了传感机制。
-
广东以色列理工学院《ACS AEM》:3D气溶胶喷射打印的石墨烯微超级电容器阵列,配备空心柱电极,以实现高电压和集成密度
本文展示了采用气溶胶喷射可打印石墨烯高密度聚合物薄膜(HPEs)制备的高集成度高压3D微型储能器阵列。由溶液剥离石墨烯纳米片与PPC稳定剂组成的石墨烯墨水,支持纳米片在3D气溶胶喷射工艺中实现可靠的垂直堆叠,从而制备出高度可控的精细化高电极厚度结构。
-
浙江理工《AFM》:基于三元金属硒化物/石墨烯芯壳异构纤维,用于高性能可穿戴能源储存和生物感测
研究提出一种新型三元金属硒化物(NiCoCuSex),其通过核心-壳层异质结构锚定于还原氧化石墨烯(rGO)纤维上,具有丰富的活性位点、硒化反应诱导的缺陷富集表面以及协同的多金属相互作用。
-
清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测
该结构赋予材料双重功能:作为超级电容器电极时,其在1 A·g⁻¹电流密度下展现出131 F·g⁻¹的高比电容,并具有卓越的循环稳定性(100,000次循环后容量保持率达94%); 作为氨气传感器,其在0.1-50 ppm范围内展现高灵敏度,响应/恢复时间达17/26秒(10 ppm浓度),并对干扰气体具有优异选择性。
-
韩国首尔大学《AFM》:基于层层叠加石墨烯薄膜的多层复合膜,用于紫外掩模薄膜应用
本研究开发了一种多层复合薄膜,其核心层采用逐层堆叠的石墨烯结构,专为极紫外掩模膜应用进行优化。为支撑石墨烯层并保护其免受氢自由基侵蚀,分别在其顶部和底部表面涂覆了钼和氮化硅薄膜。所得多层复合薄膜展现出优异的机械性能,随着石墨烯层数的增加,其杨氏模量和断裂载荷显著提升。
-
浙江大学《Adv Mater》:碳纳米管桥接rGO/MXene光纤,用于高性能光纤超级电容器
研究开发了一种流体驱动湿法纺丝策略,用于制备碳纳米管(CNT)桥接的垂直取向氧化石墨烯(rGO)/MXene纤维(CNT-VA-GMFs)。
-
西安交通大学《Energy Fuels》:微波还原石墨烯复合电极,用于超级电容器
研究通过原位微波还原技术,系统优化微波处理参数以实现氧化石墨烯在复合电极中的均匀分散。结合多尺度形态表征与电化学性能分析,建立了由微波处理条件调控的清晰结构-性能关系。
-
安农大《Adv Sci》:仿生多尺度石墨烯/聚氨酯海绵复合材料,用于柔性压力传感器和智能缓冲材料
为满足智能家居与医疗健康领域对柔性传感器的迫切需求,本研究提出了一种极具前景、低成本且可持续的解决方案。我们高效地将农业废弃物(LV)转化为生物质衍生的石墨纳米片。通过创新的分级组装方法,以聚氨酯海绵为基体构建了多功能导电海绵(MAPU)。该材料的核心优势在于其多级导电网络与弹性骨架的无缝融合,赋予其卓越的传感性能,足以满足人体健康监测与智能交互应用需求(灵敏度:0.821 kPa−1,响应范围:242 kPa,超过30,000次循环仍保持稳定响应)。
-
四川大学《Small》:高度可伸缩且自愈合的石墨烯封装液态金属复合材料,适用于多功能应用
研究用石墨烯纳米片(GNS)包裹液态金属液滴,二者协同作用在超分子聚氨酯脲(PUU)基体中形成混合网络。在混合网络中,GNS不仅作为LM液滴间的桥梁形成高效通路,还通过包裹LM有效防止其渗漏。
-
香港理工大学等《ACS Sens》:新型压阻式石墨烯/CNC声学传感器,用于语音识别
研究开发了一种新型压阻式声学传感器,通过气溶胶喷射打印技术,采用聚氨酯(PU)薄膜封装石墨烯/纤维素纳米晶体(CNCs)进行增材制造。该传感器具有高度生物相容性和柔韧性,能够精确测量变化的声音压力水平(SPL)。

-
韩国庆尚大学《AMT》:可大规模生产无添加剂、少层浓缩石墨烯氧化物墨水,实现工业可持续印刷
研究探索了可扩展、无添加剂氧化石墨烯墨水生产的新策略,重点在于对选择性边缘氧化石墨烯氧化物(GO)氧化程度的精确控制。