清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

该结构赋予材料双重功能:作为超级电容器电极时,其在1 A·g⁻¹电流密度下展现出131 F·g⁻¹的高比电容,并具有卓越的循环稳定性(100,000次循环后容量保持率达94%); 作为氨气传感器,其在0.1-50 ppm范围内展现高灵敏度,响应/恢复时间达17/26秒(10 ppm浓度),并对干扰气体具有优异选择性。

成果简介

作为低碳能源循环中极具前景的氢载体,氨同时也是大气中最丰富的碱性气体,通过多种地球物理和化学过程影响环境质量。因此,开发能在自供电模式下保持高灵敏度和稳定性的NH3传感材料至关重要。本文,清华大学周小红 长聘副教授团队在《ADVANCED SCIENCE》期刊发表名为“Ammonia Gas Sensor Fabricated by Multifunctional ZnO/GO Nanocomposites for Long-Term, Self-Powered Monitoring”的论文,研究展示了一种一步原位聚合法,用于合成氧化锌/氧化石墨烯(ZnO/GO)纳米复合材料,该材料既可作为氨气传感的气敏薄膜,又能作为超级电容器的高性能电极材料。

在超级电容器应用中,其比电容达到131 F g−1(电流密度1A g−1)。该氨气传感器具有低检测限(0.1 ppm)和快速响应/恢复时间(10 ppm NH3条件下17秒响应/26秒恢复),不仅超越美国职业安全与健康管理局设定的标准(50 ppm),更优于商用NH3气体传感器。通过将传感器集成至定点监测检测仪器,在连续210天测试中实现了低于1%的响应相对标准偏差。此外,研发的可穿戴式接触分离式热电纳米发电机(TENG),通过模拟人体步行的接触分离装置收集机械能,实现最大4.1毫瓦输出功率,可直接驱动氨气传感器。多场景应用显著提升了氨浓度监测的空间覆盖范围与操作灵活性。

图文导读

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图1、Characterization of ZnO/GO nanocomposites. a) Schematic diagram of the preparation of ZnO/GO nanocomposites simultaneously used for the fabrication of supercapacitors and gas sensors. b, c) SEM and d, e) TEM image of the synthesized ZnO/GO nanocomposite. f) EDX elemental mapping of ZnO/GO nanocomposites. XPS spectra of ZnO/GO nanocomposites: g) Survey scan, h) C 1s, i) O 1s, j) Zn 2p, k) XRD patterns of ZnO, GO, and ZnO/GO nanocomposites. l) Amplified XRD patterns of ZnO/GO nanocomposites.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图2、Density functional theory (DFT) simulation of ZnO/GO nanocomposites. Charge density of a) GO, b) ZnO, and c) ZnO/GO after NH3 molecule adsorption (black: C atoms, blue: N, red: O, grey: Zn, white: H). d, e) TDOS diagrams of the ZnO/GO system before and after adsorption of NH3 molecules. f) PDOS diagrams of ZnO/GO system adsorption of NH3 molecules.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图3、Evaluation of supercapacitor and gas-sensing performance. a, b) CV and GCD curves of the ZnO/GO electrode. c) Specific capacitance of ZnO/GO electrode at different current densities. d) Specific capacitance of ZnO/GO-based supercapacitors fabricated with different thicknesses of electrode materials at a current density of 1 A g−1. e) Evaluation of the durability of the specific capacitance of the supercapacitor. f) The resistance changes of NH3 gas sensors based on pure ZnO and ZnO/GO composite under different NH3 concentrations at 20 °C. g) The response of NH3 gas sensors based on pure ZnO and ZnO/GO composite under different NH3 concentrations at 20 °C and h) Response fitting curves. i) The response/recovery characteristic curves at NH3 concentration of 10 ppm at 20 °C.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图4、Design and implementation of a ZnO/GO-based ammonia detection instrument. a) Photograph of the interdigital electrode for deposition of ZnO/GO nanocomposites. b) SEM images and elemental mapping of the ZnO/GO nanocomposites-deposited sensor prepared with the optimized spin-coating time of 60 s. Photographs of the integrated ammonia gas detector and its functional modules: c) external view, d) internal PCB module, and e) display screen. f) Schematic illustration of the system architecture of the ammonia gas detector.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图5、Environmental endurance and stability tests of the ammonia gas detector. a) Selectivity of the ZnO/GO composite-based sensor. b) 3D scatter of the response vs both humidity and NH3 concentration for the ZnO/GO-based sensor. c) Linear behavior of the response vs both humidity and NH3 concentration for the ZnO/GO-based sensor. d) The temperature effect on the ZnO/GO-based sensor. e) Comparison of response/recovery time between this work and other types of NH3 gas sensors. f) Repeatability and stability measurement results of the ZnO/GO-based sensor under different NH3 concentrations. g) Long-term stability of ZnO/GO-based sensors over 210 days under exposure to 5 ppm NH3. h) Photograph of the installed ammonia detector and six months of NH3 concentration monitoring from October 10, 2024, to April 21, 2025.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图6、Self-powered ammonia gas sensing by a wearable contact-separated TENG (WCS-TENG). a) The schematic diagram illustrating the structure, working principle, and application prospect of the WCS-TENG. b) Effect of speed on open-circuit voltage of WCS-TENG. c) Variation curve of WCS-TENG output power at different resistances. d) Capacitor charging curve of WCS-TENG. e) The voltage response of the sensor at varying concentrations of NH3 gas. f) Voltage fluctuations of the sensor during NH3 concentration transitions between 0 and 50 ppm. g) Response and recovery time of the sensor under the WCS-TENG-driven operation.

清华大学《Adv Sci》:由多功能ZnO/石墨烯纳米复合材料制备的氨气传感器,用于长期自供电监测

图7、Schematic diagram of application scenarios for fixed-type and self-powered ammonia monitoring systems.

小结

本研究通过原位聚合法成功制备了ZnO/GO纳米复合材料,其具有独特的结构特征:ZnO纳米颗粒均匀分布于GO片层之上。该结构赋予材料双重功能:作为超级电容器电极时,其在1 A·g⁻¹电流密度下展现出131 F·g⁻¹的高比电容,并具有卓越的循环稳定性(100,000次循环后容量保持率达94%); 作为氨气传感器,其在0.1-50 ppm范围内展现高灵敏度,响应/恢复时间达17/26秒(10 ppm浓度),并对干扰气体具有优异选择性。长期定点监测表明其稳定性卓越,210天内响应相对标准偏差低于1%,符合实际环境条件。此外,通过集成可穿戴式接触分离型热电纳米器件(TENG),基于ZnO/GO的氨气传感器实现了自供电运行,可在动态环境中持续检测NH3而无需外部能量输入。多场景应用显著提升了NH3浓度监测的空间覆盖率与操作灵活性,为智能可持续环境传感技术开辟了前景广阔的发展路径。

文献:https://doi.org/10.1002/advs.202516833

本文来自材料分析与应用,本文观点不代表石墨烯网立场,转载请联系原作者。

(0)
材料分析与应用材料分析与应用
上一篇 2025年12月9日
下一篇 2025年12月9日

相关推荐

发表回复

登录后才能评论
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部