为了提高石墨烯纤维的电化学性能,一种有效的策略是在石墨烯纳米片中插入金属化合物或导电聚合物等高理论电容材料,以增加活性位点,提高电化学性能。本文,北京服装学院张梅教授团队在《Journal of Energy Storage》期刊发表名为“Polyaniline nanowires anchored on MXene quantum dots/graphene composite fibers with 0D-1D-2D hierarchical structure for high-performance wearable supercapacitors”的论文。研究连续制备具有0D-1D-2D 分级结构、大的比表面积、优异的面积比电容和高能量密度的高性能纤维电极(PANI@MQDs/GF)。PANI@MQDs/GFs的多组分有效结合、纳米尺度上的强协同效应以及0D-1D-2D分级结构,不仅缓解了石墨烯纳米片的重新堆叠,还增强了界面电荷转移,提供了更多可及的位点和离子动力迁移与积累的快速路径,从而实现了优异的结构稳定性和电化学性能。
此外,0D MQDs 通过 C-O-Ti 共价键均匀锚定在2D 纳米片上,形成点-片结构,这增强了石墨烯纳米片和MQDs 之间的相互作用,减少了重新堆积。然后通过电化学聚合将1D PANI 纳米线包覆在MQDs/GF 上,制备出具有0D-1D-2D 分级结构的PANI@MQDs/GF,提高了比表面积(81.0m2 g-1),减缓了PANI 在充放电过程中的结构变化。基于PANI@MQDs/GF组装的纤维型柔性超级电容器展现出优异的面积比电容(1691 mF cm-2,对应比体积电容为450 F cm⁻3),在9500次循环后仍保持近100%的电容保持率,并实现卓越的能量密度(214.4 μWh cm-2)。构建的纤维型超级电容器可以为编织在织物中的“星形”二极管供电,设计自供电系统为电子温湿度计供电,促进了智能穿戴领域的实际应用。

图1、Fabrication process of PANI@MQDs/GF.
综上所述,本研究报道了一种基于微流控技术的湿法纺丝方法,用于制备具有0D-1D-2D分级结构的聚苯胺纳米线修饰的MXene量子点/石墨烯复合纤维(PANI@MQDs/GF)。PANI@MQDs/GFs的多组分有效结合、纳米尺度上的强协同效应以及0D-1D-2D分级结构,不仅缓解了石墨烯纳米片的重新堆叠,还增强了界面电荷转移,提供了更多可及的位点和离子动力迁移与积累的快速路径,从而实现了优异的结构稳定性和电化学性能。基于PANI@MQDs/GF组装的纤维型柔性超级电容器展现出优异的比表面电容(1691 mF cm-2,对应比体积电容为450 F cm-3),在9500次循环后仍保持近100%的电容保持率,并实现卓越的能量密度(214.4 μWh cm-2)。所设计的0D-1D-2D分级结构复合纤维也可扩展至其他层状材料,为纤维型超级电容器在便携式/可穿戴电子设备中的应用开辟更多可能性。
文献:https://doi.org/10.1016/j.est.2025.117346
本文来自材料分析与应用,本文观点不代表石墨烯网立场,转载请联系原作者。