宏观厚度多孔石墨烯晶体膜电极构筑的超级电容器性能得以显著提升

科研人员采用激光诱导加工法,将聚酰亚胺前驱体直接原位转化为石墨烯晶体膜;针对其直接用作储能电极时所面临的体积效应技术瓶颈,通过优化前驱体的分子构型和热敏感性,大幅增加了激光与聚合物薄膜的作用深度,进而实现了多孔石墨烯晶体膜的宏观厚度制备;以此作为电极构筑的超级电容器,在储能密度和循环稳定性方面得到显著的提升。

近期,中科院合肥研究院固体所王振洋研究员课题组实现了宏观厚度石墨烯晶体膜大面积制备,在超高储能密度超级电容器研制方面取得新进展。科研人员采用激光诱导加工法,将聚酰亚胺前驱体直接原位转化为石墨烯晶体膜;针对其直接用作储能电极时所面临的体积效应技术瓶颈,通过优化前驱体的分子构型和热敏感性,大幅增加了激光与聚合物薄膜的作用深度,进而实现了多孔石墨烯晶体膜的宏观厚度制备;以此作为电极构筑的超级电容器,在储能密度和循环稳定性方面得到显著的提升。相关结果以“Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors”为题发表在Journal of Power Sources上。

宏观厚度多孔石墨烯晶体膜电极构筑的超级电容器性能得以显著提升

图1. 聚酰亚胺的热敏性调控及宏观厚度石墨烯晶体膜的激光诱导生长。

石墨烯具有比表面积大、导电性好、稳定性高等一系列优点,近年来被广泛研究用作超级电容储能器件的电极材料。石墨烯电极在微观尺寸下所具有的优异电化学性能已经被广泛的研究和证实。但石墨烯超级电容器的规模化应用需要在保持其优异电化学性能的前提下,实现宏观尺度(大面积和超高厚度)上的电极制备与组装。然而,在宏观厚度的石墨烯电极中,离子扩散通常受到限制,石墨烯片层的堆叠也会引起较大的内阻,导致电化学性能降低。因此,如何设计制备出兼具宏观厚度和丰富孔隙结构的电极材料是石墨烯超级电容器产业化应用所亟需解决的关键难题。

宏观厚度多孔石墨烯晶体膜电极构筑的超级电容器性能得以显著提升

图2. 宏观厚度石墨烯晶体膜的结构表征。

宏观厚度多孔石墨烯晶体膜电极构筑的超级电容器性能得以显著提升

图3. 石墨烯/聚吡咯复合材料的超级电容性能。

为此,科研人员采用过快速高效、过程简单、环境友好、可同步图案化的高能激光诱导法,在聚酰亚胺基底上进行三维多孔石墨烯晶体膜的原位制备。为了调控激光与聚酰亚胺前驱体的相互作用,科研人员 通过控制原料化学计量比和酰亚胺化反应温度来调控产物聚酰亚胺的酰亚胺化程度和分子构型,从而改变其热敏感性 。最终, 在聚酰亚胺膜上原位生长出厚度高达320 μm的分级多孔结构石墨烯晶体膜,其面积和体积比电容高达172.2 mF/cm2 和4.13 mF/cm3,展现出巨大应用潜能。进一步原位电沉积赝电容材料聚吡咯,可以制得石墨烯/聚吡咯复合电极,其面积比电容高达2412.2 mF/cm2 。研究发现,以该复合电极材料作为电极制造的平面叉指形柔性全固微型态超级电容器, 可获得高达134.4 μWh/cm2和325.2 μW/cm2的能量密度和功率密度 ,且同时兼具优异的倍率性能、循环稳定性和机械柔韧性。

上述工作得到了国家自然科学基金委大科学装置联合基金项目和青年基金项目等多个项目的资助。

来源:合肥物质研究院

论文链接:

https://www.sciencedirect.com/science/article/pii/S0378775320313707

本文来自搜狐,本文观点不代表石墨烯网立场,转载请联系原作者。

(0)
石墨烯网石墨烯网
上一篇 2020年11月24日
下一篇 2020年11月24日

相关推荐

发表回复

登录后才能评论
客服

电话:134 0537 7819
邮箱:87760537@qq.com

返回顶部